Plasma optical modulators for intense lasers
نویسندگان
چکیده
Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 10(16) W cm(-2) to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations.
منابع مشابه
Electromagnetically confined plasma target for interaction studies with intense laser fields
The paper describes a novel application of an electron beam ion trap as a plasma target facility for intense laser–plasma interaction studies. The low density plasma target ( 10/cm) is confined in a mobile cryogenic electromagnetic charged particle trap, with the magnetic confinement field of 1–3 T maintained by a superconducting magnet. Ion plasmas for a large variety of ion species and charge...
متن کاملPhotonic Materials and Devices
Our recent advances in solid-state optoelectronic materials and devices will be reviewed. In the area of glass optics, fabrication of novel microstructured and multi-core fibers and their use in realizing single mode lasers will be summarized. In organic and plastic optics, photorefractive polymers for 3D display applications and nonlinear optical polymers for high speed modulators in RF photon...
متن کاملNumerical Analysis of Mushroom-type Traveling Wave Electroabsorption Modulators Using Full-Vectorial Finite Difference Method
Larger width of P-cladding layer in p-i-n waveguide of traveling wave electroabsorption modulator (TWEAM) results in lower resistance and microwave propagation loss which provides an enhanced high speed electro-optical response. In this paper, a fullvectorial finite-difference-based optical mode solver is presented to analyze mushroom-type TWEAM for the first time. In this analysis, the discont...
متن کاملAdvanced X-ray Diagnostics for Large Scale Dense Plasmas
Future GSI-experiments with intense heavy ion beams and the kilo-joule PHELIX-laser necessarily deal with large scale dense plasma objects. These plasmas might be either created by lasers to serve as a target for advanced studies of heavy ion beams interacting with matter or as intense back-lighter sources or may be created by intense heavy ion beams for, e.g., studies of strongly coupled plasm...
متن کاملRecent Developments and Signal Processing of Low Driving Voltage and High Modulation Efficiency Electro-absorption Modulators (EAMs)
Electro-absorption (EA) modulators are very attractive devices for optical fiber communications because of their very low driving voltage, very high modulation efficiency and integratibility with lasers. However, conventional EA modulators are lumped electrode devices, whose speeds are limited by the total parasitics of the devices, which restricts the devices to very short length for high spee...
متن کامل